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ABSTRACT 

Some relatively model independent results for structure formation via late time phase 

transitions (LTPT) are discussed. In particular, generic LTPT power spectra are presented: 

The implication of the recent COBE detection of the cosmic background radiation (CBR) 

anisotropy at loge angular scales (2 7’) and the tight upper limits from small angular 

scales (- 1”) to LTPT models are discussed. Special attention is focused on the observa- 

tional constraints and possible non-Gaussian signatures of CBR temperature anisotropies 

from LTPT and other non-Gaussian models. It is shown that while LTPT have been seri- 

ously constrained by the recent data, viable models do remain which provide more power 

on the 100 - 200Mpc scales than do more traditional primordial Gaussian density .fluc- 

tuation models. Tests for such models are presented, including possible snisotropies on 

angular scales < 8 arcminutes. 
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Introduction 

One of the major questions in cosmology today is the origin of cosmic structure. Models 

for structure formation have been constrained tremendously by the recent measurements 

and limits placed on the anisotropy of the cosmic background radiation (CBR) by the 

COBE satellite (Smoot et al. 1992; Wright et al. 1992; Bennett et al. 1992) and by 

balloon experiments (Meyer et al. 1991) and studies at the South Pole (Gaier et al. 1992). 

These measurements from the recombination epoch are confronted by the traditional ob- 

servations of the distributions of galaxies and clusters of galaxies on scales of 10’s to 100’s of 

Mpc. Models for structure formation generally consist of assumptions about composition 

(percentages of baryons and hot (HDM) and/or cold (CDM) non-baryonic dark matter) 

coupled with some assumptions about the seeds to initiate the clumping of the matter. 

Seeds can be divided into different categories. For example, Gaussian density fluctuations 

versus topological defects, or primordially generated versus possible generation after re- 

combination. This latter category of late time generation of seeds (which could produce 

Gaussian and/or topological seeds) is the class-of seeds we will focus on in this paper. 

Possible physical mechanisms for such late time seed generation include low temperature 

fundamental phase transitions (Hill, Schramm, & Fry 1989; Press, Ryden, & Spergel1990; 

Frieman, Hill & Watkins 1992) or maybe even some instability at the end of recombination 

itself (Klemperer et al. 1992). We will refer to all such seed generation mechanisms as 

late time phase transitions (LTPT), although the recombination proposal is an instability 

rather than a true phase transition. The purpose of this paper is to examine the current 

status of LTPT in the light of the new observational data. In particular, we will address 

the issues of the viability of LTPT after COBE, and whether LTPT present any possible 

advantage over more conventional models (Gaussian density fluctuations). We will also 

discuss possible tests that will eventually confirm or decisively kill LTPT. 

Before addressing these points, let us review a moti&tion behind LTPT which will 

guide our discussion. One of the key concepts of standard cosmologyis the particle hori- 

zon. It sets the scale within which causal physics processes are important. The horizon size 

R is evolving as the universe expands. In the matter dominated;epoch, R = Hi' / dm, 

where Ha is the present Hubble constant and a is the redshift. It is interesting to notes 

that the comoving horizon size at redshift I N 100 is approxnnately gOOh-’ Mpc, which 
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is about the same size as the largest structure observed today (Geller & Huchra 1989; 

Bahcall 1992). This interesting relation is a prime motivation for us to persue the pos- 

sibility that the perturbation of large scale structures in the universe today is created 

at redshift z - 100. Since this epoch is after the recombination epoch, it falls in the 

generic domain of LTPT. This paper will discuss some relatively model independent re- 

sults of LTPT, including the required shape of the implied power spectrum, the impli- 

cation of the recent COBE detection of CBR anisotropies at large angular scales (2 7”) 

and the tight upper limits from small angular scales (- 1”) to the model and the possi- 

ble non-Gaussian signature of CBR anisotropies from LTPT and the observational limits. 

(1) Power Spectra from LTPT 

For discussion, let us set the phase transition epoch to be at z - 100, which corresponds 

to a comoving scale of X, - 300h-!Mpc. The density perturbations inside the horizon are 

very model dependent, a point to which we will return later. However, it is straight forward 

to calculate the power spectrum on the superhorizon scale. It is just a white noise spectrum 

PO(k) - kO, 0.1) 
since the density fluctuations are simply the incoherent sum over different horizon volumes. 

However, the equal time power spectrum should take into account the different growth 

factors that different wavelengths have. All the density waves whose wavelength is larger 

than this value are superhorizon and the amplitude of the perturbation will not grow 

until it is inside the;horizon at some later epoch. Thus, the processed superhorizon power 

spectrum is: 

P(k) = ($+(k). 
c 

It is convenient to express the comoving horizon X and the evolution of the density pertur- 

bation 6 as a function of the scale factor of the background metric R(t) (Weinberg 1972; 

Kolb & Turner 1990): 

and 

X(R)‘= -&JR dx 
0 0 [r’(l - R, - 0”) +&J -I- R”Z4]‘/2 (1.3) 

(1.4)’ 



where fl,, R, are the mass fraction of matter and vacuum at the present epoch and the 

function f(R) is . 
R, - iX,,/2R3 

ftR) = 2 + Q, + fi,,,/R3 + (I- R, - n,)jR2’ 

which is determined from the Friedman equation: 

HZ = $ = H,2[R, + i-&,/R3 + (1 - R, - Q,)/R’]. 

We can parameterize the density evolution as: 6(R) = a(R)&, where 6s is the perturbation 

generated at the phase transition epoch and a(R) is the growth factor of the perturbation. 

To find the power spectrum, one has to relate a(R) to the comoving wavelength X, which 

can be done by inverting the function found in Eq.( 1.3). The equations (1.3) and (1.4) are 

solved numerically and they are shown in Fig. (1) and (2) for three different cosmological 

models: 

(1) R.= 1 matter (either CDM and/or HDM) dominated universe, 

(2) R = R, = 0.2, an open universe with matter density of 0.2. 

(3) R = 1, $2, = 0.2, R, = 0.8, a cosmological constant dominated case. 

The familiar result a(R) = R, X - x& is obtained for case (1). The shape of the power 

spectrum on scale X > X, is 

(1) P(k) - Ic’; 

(2) P(k) N k’ on scale between X, - 300Mpc and Ad - IOOOMpc; on the larger scales, 

P(k) - k’; 

(3) the situation is almost identical to case (2), which indicates that the shape of the 

spectrum is determined primarily by the matter content of the universe. 

On the subhorizon scale, the large scale redshift surveys provide us with a fair amount 

of data on certain aspects of the required power spectrum. Thus, we can determine cer- 

tam aspects of the required powerspectrum of density perturbations empirically. Unlike 

primordial fluctuations, LTPT are still relatively unconstrained as to the specific nature 

of the spectrum of seeds generated. As noted by Hill et al. (1989), different models are 

able to produce a wide range of possibilities. Hence, empirically derived spectra are in fact 

quite acceptable and in some sense are the preferred LTPT spectra. 
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In previous papers (Luo & Schramm 1992a; Szalay & Schramm 1985), we have shown 

that the two point correlation function for galaxies, clusters, CD galaxies, X-rays galaxies, 

QSO’s and the superclusters can be written in a scale invariant way: 

C(r) = @)(t/Ly, (1.7) 

where L is the average distance between objects in the surveys and the dimensionless 

clustering amplitude is about 0.26, which indicates the underlying density field may be 

scale invariant up to - X,. A power spectrum derived from Eq. (1.7) of a scale invariant 

density field (fractal) will follow a power law with index n = 1.8 - 3 = -1.2, or 

P(k) - k-l.*, (1.8) 

on subhorizon scales. Thus, the overall shape of the power spectrum from LTPT can be 

approximated as the following: 

for fi = 1 matter dominated universe. _ 
A(kd/k)3(k/kc)1, k 5 kd; 

(2) or (3):P(k) = 

{ 

A(k/k,)‘, kd 5 k 5 k,, where k, = 2s /&, kd = 2r/&. 
A(k/k,)-1.2, k > kc. 

The normalization of the power spectrum can be done by using the small scale galaxy 

correlations or by using the CBR quadruple moment on large scales. Similar to the well 

known CDM model, we can parameterize the normalization by a biasing factor b. The 

constraint on b can be obtained from the CBR anisotropy, which will be discussed in the 

next section. 

(2) Normalization of the Power Spectrum 

Before discussing the normalization of the power spectrum produced by LTPT, let us 

first review the technique used in the conventional.CDM model. There are two options 

to normalize the spectrum: either by the galaxy-galaxy correlation function c(r) on small 

scale or by the CBR quadrupole observed by COBE on large scale. The commonly used 

normalizations on small scale are (Davis & Peebles i983; Dressier et al. 1987): 

gLMpc = 1; 

J&Oh-‘Mpc) = 270hT3Mpc3; 
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v,,,(5Oh-‘Mpc) = 500km/s. (2.3) 

On large scale, if the perturbations are primordial and the temperature fluctuation is due 

to the Sachs-Wolfe effect, then the quadrupole moment will be: 

(2.4) 

for a scale invariant Harrison-Zeldovich (n=l) spectrum. The observed rms quadruple Q 

is 

&2 = {(21+ 1)/4n}a$ (2.5) 

COBE’s detection (Smoot et al. 1992; Wright, et al. 1992) of Q = (4.8 rt 1.5) x 10m6 thus 

provides the normalization of the spectrum on large scale. 

The observations on small scale come from high density peaks like galaxies and clus- 

ters, which are not the underlying density field. But the CBR fluctuation is probing the 

density field itself. One usually parametrizes the discrepancy by introducing a biasing pa- 

rameter b, where ( $),.a... = f( $) ig I ht. COBE resultssuggest that such a constant biasing 

parameter is unity for the CDM model. However, such a normalization would then have 

a problem in understanding why the apparent R, implied by galactic rotation curves is 

2 0.1. Primordial CDM models thus now tend to prefer a scale dependent bias or utilize 

mixtures of CDM with HDM (Schaefer & Shafi 1992; Davis, Summers,& Schlegel 1992; 

van D&n & Schaefer 1992). In this paper, we will instead appeal to LTPT. 

The normalization of the power spectrum for LTPT on large scale is slightly different 

than primordial cases since CBR fluctuations are related to the time changing gravitation 

potential through (Jaffe, Stebbins & Frieman 1992): 

LTPT = 2 
J 

bdtl, (2.6) 

rather than the potential + itself on the surface of last scattering (Sachs-Wolfe effect) 

AT 
(-)sw = ;a. 

T (2.7) 

The temperature fluctuations are frequently written in terms of the temperature correlation 

function 

C(Q) =< $q$(i”) >= -&X(2/ f l)C,fi(Tjl iz), (2.8) 
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where the multipole amplitude for Sachs-Wolfe effect is: 

and 

H,4 c,sw = - 
8~2 J 

dkk-*P(k)j,(kq)*, 

LTPT = 9H,’ Cl 2x2 J 
dkk-*P(k)/ 

J 
’ dqjr(k(q,, - q~))jk(fl)l*, 

rlo 

(2.9) 

In the model when the density perturbation is produced by a phase transition at redshift 

z - 100, in the large scale limit, k + 0 

Cl LTPT + 36C,sw, (2.11) 

which is independent of I and the wavelength. 

When we normalize the power spectra from LTPT by the COBE detected quadruple, 

the power on the scale to which COBE is sensitive will be 36 times smaller than that from 

a primordial spectrum. In terms of a biasing parameter, for the three cases we studied in 

the previous section, the constraints are: 

(i) The power spectrum or R = 1 matter dominated universe is shown in Fig. 3. If-we 

normalize the density field to COBE, one finds that on small scales the density field should 

be anti-biased and ihe biasing parameter should be about b z J/8 to fit the observations. 

If we normalize the power to small scale and assume that the biasing factor is b=l, the 

observed CBR temperature anisotropy will be lower than the COBE level by two orders 

of magnitude. This pure LTPT model is basically ruled out by COBE’s detection of CBR 

temperature fluctuations at the level of lo-’ unless one is willing to accept antibiasing 

and allow a power law index n N 4 rather than the COBE observed n = 1.1 i 0.6 on large 

scale. However, mixed models where primordial fluctuations generate CBR fluctuations 

on large scale and LTPT generate small scale structure are still viable and we will discuss 

them later. 

(ii) The power spectrum for an open universe or cosmological constant A dominated. 

universe with R, = 0.2 is shown in Fig. 4. This LTPT model does fit the observations 

including the extra power observed by the APM survey. The biasing parameter is about 1 ~ 

for these models and the effective power law index of the power spectrum is also within the 

COBE limits: But the models suffer the theoretical flaw of being “unnatural” in the sense 

that inflation and the flatness problem itself argue for a flat universe and A dominated 

models require a precise tuning of A to 121 decimal places (Ca+ol, Press, & Turner 1992). 
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(3) HDM with LTPT models 

The previous section discussed the case where LTPT was solely responsible for the 

density perturbations observed today. However, it is still plausible that primordial density 

perturbations produce the large angular CBR fluctuations while LTPT dominate the small 

scale perturbations. In this mixed case, if the matter content of the universe is cold dark 

matter, it will do more harm than good, since the power on small scale predicted by the 

unbiased CDM model is already too high. However, if the dark matter candidate is a - 

light massive neutrino, the small scale power generated by LTPT solves the problems of 

traditional HDM models where small scale power is erased by neutrino free streaming. 

The power spectrum of the mixed case, normalized to COBE on large scale and $ = 1 at 

8h-‘Mpc (choose the biasing factor b=l) is shown in Fig. (4). The characteristic feature 

of the power spectrum is that there is a power enhancement at the scale which corresponds 

to the comoving horizon size of the LTPT epoch. 

The arguments can be made quantitative by comparing the angular two point correla- 

tion w(B) predicted from the model described above with the observations from the APM 

survey. The ang&r correlation function w(0) is related to the spatial two point correlation 

function E(r) through Limber’s equation (Peebles, 1980): 

u(O) = E-’ 
J 

~m(~l~*)*~h~~2Q(~l)~(~l)~(r), (3.11 

where r = D(y: + yi - 2yrys cos(6’)) ‘I*, E = Jswy2+(y)dy and # is the selection function. 

We adopt the following selection function in accordance with the APM survey (Peacock 

1991; Ksshlinsky, 1992): 

d(Y) = Y 
-a.s,-(y/D)? 

(3.2) 

The characteristic scale D is chosen to be 232/z-‘Mpc as used by Peacock (1991) for the 

APM survey. As shown in Fig. (6), HDM with an LTPT predicts an angular two point 

correlation function that fits the APM observations remarkably well. In contrast, the 

standard CDM model predicts an angular two point function which falls off too rapidly on 

larger (> 1”) angular scales. Its is e&y to understand physically why primordial models fail 

to fit the APM data while LTPT models naturally accommodate it. If the perturbation is 

generated primordially, it will not grow until the universe is matter dominated. Thus, the 

horizon size at the matter-radiation equality epoch, XEQ N 13(fi2h2]-‘Mpc, which sets the 
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correlation scale of the density perturbation, is just too small compared to the characteristic 

correlation scale implied by the APM data. On the other hand, the correlation length scale 

in LTPT is the horizon size at the epoch of LTPT, which is fairly large. Thus, more power 

on large scale is allowed thus fitting the APM data. 

One concern regarding the powers enhancement at the intermediate scale is the tight 

bound from the CBR measurement on these scales. This situation will be addressed in the 

next section. 

(4) Small Scale ( < 3”) CBR Fluctuations 

Before we get into the discussion of small scale angular anisotropy, let us discuss first 

the beam smearing effect: all experiments are done with finite beam width a and the beam 

can be well approximated as a Gaussian: 

f(Ifi - +) = &e-l+~l’/*~‘, 

and the observed temperature correlation function will be the convolution of the theoretical 

correlation (infinite thin beam) with the beam (Wilson & Silk 1981; Gouda, Sasaki, & Suto; 

1989), which is 

C(I~ - iil,u) = J df&lf$f(lrn - r;l’I,a)f(lfi - 2l,a)C(lrn~ - r?l,O). 
The multipole expansion of the correlation function is: 

(4.2j 

cw - 4,O) = X(21 + l)C~(O)P,(r%), 
I 

then the observed correlation is 

c(l* - til,b) = Ca,(a)(21+ 1)cI(o)Pl(in~), 
I 

(4.3) 

where OJ(O) = lj~(~/uz)12 which is just the j-th order spherical Bessel function of imaginary 

argument. In the limit of small 0, the formula reduces to 

(4.5) 

which is the commonly adopted formula. 
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By combining COBE and the power spectrum suggested by APM, if the density per- 

turbation is generated primordially, the predicted small angle temperature snisotropy is 

(Kashlinsky 1992): 

gi3=1.5n = 1.3x($&,s~ N 1.4x10-5,rmd ($,=,.s. = 1.2x($-)oos~ u 1.3x10-5, 

(4.6) 
The small scale CBR anisotropy depends on the details of how the gravitational potential 

is generated, thus a wide variety of values sre allowed. As shown by J&e, Stebbins, 

& Frieman (1992), the minimal small scale temperature fluctuation in LTPT models is 

reduced by a factor of (g), 

where t& x 3’. Thus the predictions from LTPT for the UCSB South Pole and MIT balloon 

experiments will be 7 x 10e6 and 1.4 x 10V5 respectively. Furthermore, 6T/T decreases 

linearly with the decrease of the angular scale which the experiment probes. These results 

are consistent with the tight limit from the UCSB South Pole experments (Gaier et al. 

1992). However, the predicted minimal 6T/T is far below the recent detection of MAX 

(Meinhold et al. 1992) of several times lo-’ at the 0.5” scale. 

For the mixed HDM and LTPT models, 6T/T is a sum of the contribution from both 

primordial and LTPT processes. Since the contribution from LTPT at small scale is small 

compared to primordial perturbations, the result will be about the same as the values 

given by Eq. (4.6). 

If the density perturbations are generated primordially, the CBR anisotropy on the 

arcminute scales will be smoothed due to the Snite thickness of the last scattering surface 

(Kolb & Turner 1990) and Silk damping (Silk 1967). H owever, smoothing effects will not 

occur in LTPT. The precise amplitude of F on arcminute scales depends on the detailed 

model of LTPT, but, in general, it will be the same order of magnitude as on degree scales, 

which +. 10-s. Thus, a detection of anisotropy on arcminute scales provides a positive test 

of LTPT models. 

(5)Tests of Non-Gaussian Temperature Fluctuations cm S.mall Scales 

The reported large scale (19 2 10”) cosmic microwave background radiation (CBR) 

anisotropy (Smoot et al. 1992; Wright et al. 1992) of COBE’and its subsequent verification 
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(Ganga et al. 1993) constrains all models of cosmic structure formation. Models which 

assume a flat, Harrison-Zeldovich spectrum and random phase, Gaussian fluctuations have 

been the easiest to calculate and the most widely discussed. Such models are also a 

natural consequence of the inflation scenario (Bsrdeen, Steinhardt, & Turner 1983; Guth 

& Pi 1982; Hawking 1982; Stsrobinskii 1982). When these fluctuation models are used with 

pure cold dark matter (CDM) and normalized to the COBE anisotropy they appear to be in 

conflict with galaxy velocity dispersions at - 10 Mpc and are at most marginally consistent 

(Gorski 1992) with limits on AT/T at the one degree scale, the UCSB experiment at 1.2 

degrees(Gaier et al. 1992): 6T/T < 1.4 x 10m5, and the MIT balloon experiment (Meyer 

et al. 1991) at 3.8 degrees: q,,,. < 1.6 x 10e5. Kashlinsky (1992) showed that the 

combination of the COBE and APM redshift surveys with Gaussian assumptions will give 

rise to a minimum temperature anisotropy q - 1.5 x 10v5 on the one degree angular 

scale, corresponding to a sky signal of 4QnK, which is in conflict with the 95% C.L. limits 

of the UCSB results. Gorski (1992) also showed that the tight bound on small scales may 

be in conflict with the large scale velocity flows. 

Obviously, the final word on the anisotropies and the velocity flow data has not been 

written yet and future data may be able to fit this standard CDM model. It has also been 

shown that modifications of the model can be made to work which still retain the Gaussian- 

random-phase nature of the fluctuations, for example, a spectrum tilted with respect to 

the flat Harrison-Zeldovich spectrum (Freese, Frieman & Olinto 1991) or maybe a mix 

of hot-dar:k matter (HDM) along with CDM (Schaefer & Shaii 1992; Davis, Summers, & 

Schlegel 1992; van Dalen & Schaefer 1992) or maybe just a biasing factor that is scale- 

length dependent. However, in this section, we address the assumption of a non-Gaussian 

distribution as the variation to resolve potential difficulties. 

As mentioned earlier, non-Gaussian temperature fluctuations occur in theories where 

cosmic structure is generated by topological seeds which are left over from a vacuum phase 

transition. Non-Gaussian temperature fluctuations can arise at various angular scales: the 

collapsing of a texture (Turok & Spergel 1991) at moderate redshift (- few) will give 

rise to hot and cold spots on the CBR sky at a large angular scale; the collapsing of 

subhorizon-sized vacuum bubbles (Gortz 1991, Turner, Watkins, & Widrow 1991) from 

a late-time-phase transition (Hill, Schramm, & Fry, 1989) (z N 100) will also produce 
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hot and cold spots but on one degree scales; cosmic strings will give rise to temperature 

fluctuations at even smaller scales (- arcminutes). Therefore, the Gaussianity of the 

distribution of CBR temperature anisotropy provides a definite test of the possible scenario 

to generate cosmic structure. The Gaussianity tests we discuss here apply to LTPT and 

other topological seeds. Remember in general; LTPT can produce all sorts of topological 

seeds (Hill, Schramm, & Widrow 1990) whereas plausible primordial defects tend to be 

strings and textures. 

In the standard CDM picture, the density perturbation is generated primordially by 

the Gaussian vacuum fluctuation when the universe resides in the inflationary phase. In 

this picture, small scale fluctuations are generated through the previously mentioned Sachs- 

Wolfe effect (Sachs & Wolfe 1967) and the Doppler effect of hot electrons (Gorski 1992) 

at the last scattering surface. The velocity dispersion of hot electrons obeys Boltzman 

statistics; thus, the temperature fluctuation is Gaussian regardless of the nature of the 

perturbation. For the Sachs-Wolfe effect, the temperature fluctuation is related to the 

gravitational potential at the last scattering surface. Since the potential is a sum over all 

density waves of the perturbation, the central limit theorem guarantees that the tempera- 

ture will be Gaussian, even if the underlying density perturbation is highly non-Gaussian 

(Scherrer & Schaefer 1992). Thus, in the standard picture, the temperature fluctuations 

are always Gaussian. 

In the COBE experiment, when convolving with a 10” FWHM beam, the non-Gaussian 

characteristic features are essentially lost, However, small scale experiments can still pro- 

vide us information about the nature of the perturbations, and, in turn, test models of 

structure formation. 

Until the present, the UCSB South Pole data have been analyzed by assuming a Gaus- 

sian distribution signal on the sky, 

P(A) = (2x0~)~’ exp(-A2/2&), (5.1) 

and, if the signals are coming from the cosmic microwave background radiation (CBR), 

they are correlated and characterized by a common autocorrelation function: 

C(8) = C(l?l ii) =.G. +i)$b) > 
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The 95% confidence level (C.L.) limits quoted in: the paper were derived by assuming a 

Gaussian autocorrelation function: 

where Co = ci = s s” P(A)A*dA is the rms temperature anisotropy. 

The Gaussian correlation in Eq.(3) is a convenient way to present results rather t&n an 

apriori assumption in the analysis. The autocorrelation is exactly calculable. For example, 

in the inflationary paradigm, it is given by the Holtzman (1989) correlation function; the 

autocorrelation function for planar domain walls and sub-horizon vacuum bubbles are also 

available (Luo & Schramm 1993). But it becomes very complicated to do the Baysian 

analysis of the data, especially when the distribution function is non-Gaussian. Therefore, 

we first perform a robustness test of the Gaussian correlation function in Eq. (3) by asking 

the following question: if the data are uncorrelated, how do the results change relative to 

the results from analysis of correlated data? If Eq.(3) . IS a fairly robust assumption, jn the 

non-Gaussian case, we can treat the data as statistically independent. 

The likelihood function for N statistical independent data is (Eadie et al. 1971): 

Jqco, a) = fi f(C0, -71, (5.4) 
i=l 

where f is the common probability distribution function. The likelihood function for 4 

different channels of the UCSB South Pole data is shown in Fig. (7) when f t&s the 

Gaussian form given by Eq.(5.1). As shown in Fig. (S), the 95% confidence level limits on 

AT calculated from the high frequency channel is 29.7 nh’, or 9 < 1.1 x 10e5, which-is 

slightly str0nger.ths.n the limits from correlated data. 

If a value for AT/T much below 1.4 x 10-s is eventually confirmed, it would be difficult 

for any Gaussian model to fit the observed large scale velocity flows and also the extra 

power reported by the APM survey, one may be forced to introduce the idea of early 

reionization of the universe to resolve the puzzle and retain a Gaussian picture. However, 

the new 15 point experiment (Gundersen 1992) doesn’t seem to be as restrictive as the 

previous 9 point experiment so care needs to be taken here to discuss reionization. In thjs 

paper, we don’t consider reionization and the present analysis is clearly preliminary. 
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Now, let us focus our attention on the Gaussian assumption of temperature fluctuations 

given by Eq. (5.1). A number of non-Gaussian probability distribution functions can 

be tested through the original nine available data points (Gaier et al. 1992). Since the 

functional space of a non-Gaussian distribution is infinite, one has to choose some statistical 

measures to quantify the discussion. Among them, skewness and kurtosis, which are the 

third and fourth moments of the distribution function (Luo & Schrsmm 1992), are often 

used. Skewness S shows the non-symmetric deviation from a Gaussian. If S # 0, there will 

be excessive fiuctuations at the hot (or cold, depending on S > 0 or not) end. Kurtosis 

K is more interesting in that it shows-a symmetric deviation from Gaussian. As we noted 

in a previous paper on the cosmological density field (Luo & Schramm 1992b), it will be 

very interesting if a negative kurtosis is discovered. For the temperature fluctuation of 

CBR, this is especially true since negative kurtosis can be associated with hot (or cold) 

spots on the CBR sky which are predicted by several models of structure formation. In the 

ideal case when there is only one hot and one cold in the samphng region, the distribution 

function will be: 

f(s) = l/2(+ - A) + 6(z + A)), (5.5) 

which has a kurtosis of K = -2 < 0. When there are a number of hot and cold spots in 

one sampling area, we can use the following distribution function: 

f(z,c(,o) = 2&-texp(-(f~~)Z) +exP(-(z~~)z)~, (5.6) 

which is the sum over two Gaussisns, centered at fp respectively, which corresponds to 

separated hot and cold regimes. n is related to the averaged amplitude of the hot and cold 

spots and the width of the Gaussian, o, is related to the angular size of the spots. If we 

assume that all spots have the same amplitude and that there are an equal number of cold 

and hot spots in the sampling area, then the parameters (P,u) in Eq. (5.8) are related to 

the physical parameters of the hot and cold spots (A,N) through: 

l- 
‘1°F A, 

iv-l - 
UNNA, 

where A is the amplitude of a spot and N is the number of hots (or cold) spot. In the limit 

N = 1, o -+ 0, exp(-w) + S(z 3~ p), thus f(z) -+ 1/2(6(s + A) + 6(z - A)), which 

recovers the result of Eq: (5.5). 
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The variance (rms temperature fluctuation) and the kurtosis of the distribution given 

in Eq. (5.6) are: 

2 = p2 + c2, (5.9) 

2 4 
-_ 

Ky2)2 3=-2(112;02)2. 

In Fig. 9, we plot the distribution given by Eq. (5.8) with o = 1 and kurtosis K = -0.5. 

The kurtosis is negative whenever there are spots in the CBR temperature distribution. 

Thus, a measurement of kurtosis, K, provides a quantitative way to hunt for possible 

existing hot and cold spots on the CBR sky. 

The results are summarized in Fig. IOa, lob. The present observational limits from 

Gaier et al. have already placed very strong limits on the possible existence of hot and cold 

spots on the CBR sky. Analyzing the data by assuming that the signals are uncorrelated 

(full analysis by taking into account the correlation will be presented later), the observa- 

tions rule out any spot of angular size of - 1’ with amplitude of 28 pK at the 95 % C.L 

which suggests that.the amplitude of the temperature fluctuation tT/T-<, 1.05 x lo-” at 

1’ scale. Implications for different non-Gaussian models are the following: 

(1) Cosmic texture. The amplitude of temperature fluctuations for cosmic texture 

(Turok & Spergel 1991) is 

6TjT~8r’Gq~ 

which is independent of the angular size. From the limits where 

6TlT) ‘@ 5 1.05 x 10-5 

we have 

Grj2 =(&/Mp)’ 52 x~O-~ 

which tightly constrains cosmic texture as a candidate for structure formation. 

(2) Domain wall bubbles. The characteristic amplitude of a collapsing vacuum bubble 

(Turner, Watkins, &~ Widrow 1991) is 

6T/T= 2.64~10-~@( 
1011eV3 ‘A 
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where (0, i) are the numerical constant of order unity. Thus the constraint on ST/T shows 

that the surface tension of the wall will be 

u 

10MeV3 
.$5 x 10-2, o < 0.5MeV3. 

Domain walls with this surface tension are too light to directly form any ~cosmologicaily 

interesting structure. This result probably eliminates domain wall bubbles as candidates 

for accreting sites that form small scale structure unless some new exotic physical process 

is involved to stablize the bubble. Large domain walls interacting with matter (Massarotti 

1991) or the mixtures of strings and walls (Luo & Schramm 1992c) may still be viable 

models. 

(3) Cosmic strings. As shown by Bouchet, Bennett, & Stebbins (I988), the CBR 

anisotropies are non-Gaussian on arcminute scales or smaller. They tend to be Gaussian 

on the scales probed by COBE, balloon experiments and South Pole experiments. Thus, 

the current bound doesn’t constrain the cosmic string models at all. So far, it is the most 

successful viable non-Gaussian alternative to generate cosmic structure. Cosmic strings 

can be generated in LTPT as well as in primordial transitions; However, in LTPT, the 

strings can be thick (Luo & Schramm 1992c) and.some aspects of the traditional string 

analysis (Bouchet et al. 1988) may not apply. 

(6) Surviving Models and Obsevational Tests 

In summary, there are three viable LTPT models which satisfy the current observa- 

tional tests: 

(1) HDM with LTPT models 

(2) Open universe with fl, = 0.2 and LTPT. 

(3) Cosmological constant dominated universe with LTPT. 

While we personally favor (1) for the reason of “naturalness”, at present, (2) and (3) 

are also still allowed by actual observations. The unique observational tests for LTPT 

includes the following 

(1) The observation of temperature fluctuation on arcmm -scale-or smaller. In the 

primordial cases, the finite thickness of the last scattering surface washes away all the 

anisotropy on scale less than w 8 arcmin. Kowever, if the perturbations are generated via 
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LTPT, the auisotropies persist. Thus, a detection of CBR fluctuations on scales less than 

8 arcmin at the level of 10v5 will provide convincing evidence for LTPT. 

(2) The mass of the neutrino. The MSW mechanism invoked to solve the solar neu- 

trino problem suggests massive neutrino and neutrino flavor mixing. The r-neutrino mass 

implied by the see-saw mechanism could be around 30 eV, which provides the closure mass 

density of the universe. If future experiments detect the neutrino mass and confirm that 

the dark matter in the universe is hot, model (1) will be an attractive model. 

(3) Detection of the break of the power spectrum at the scale - 1000Mpc. As we showed 

in Fig. 4, the power spectrum of model (2) and (3) has a break around Ad - IOOOMpc. The 

power spectra index changes from R - 1 to n - 4. This length scale corresponds to the 

horizon size of the universe when the universe becomes curvature or vacuum dominated. 

Thus an analysis of the break of the power spectrum provides a decisive test of the model 

(2) and (3). 

(4) Proof of non-Gaussianity by a non-zero kurtosis (Luo & Schramm 1992c) or by the 

three point temperature correlation function (Luo & Schramm 1993) would establish the 

need for topological. defects. Many defects are optimally viable in LTPT. 

The LTPT models bear the hope that the cosmic structure can be explained by some 

causal physical process rather than invoking new, fundamental physics. In this paper, we 

presented the relatively model independent result for structure formation via LTPT and 

discuss the possible viable models after taking into account the current observational con- 

straints. If future experiments decisively kill the LTPT model, it will imply that the seeds 

(fluctuations) are indeed primordial, thus provides another solid evidence that important 

new physics beyond SU(3) x SU(2) x U(1) is required for cosmic structure formation, 
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FIGURE CAPTIONS 

Fig. 1: For three different cases, the comoving horizon size X as a function of the scale 

-factor R. 

Fig 2: 6 vs scale factor R. 

Fig. 3: Power spectrum in LTPT models. The standard CDM and HDM power spectrum 

are also plotted in the graph for comparison. 

Fig. 4: The power spectrum for LTPT-models when the universe is either vacuum or 

curvature dominated. 

.Fig. 5: Power spectrum of density perturbation in HDM with LTPT models. 

Fig. 6: The angular two point function ~(6’) predicted from the HDM with LTPT models 

Note the agreement with the APM data. 

Fig. 7: The likelihood function of 4 different channels for South Pole data set. The three 

low frequency channels~all show the detection of a signal. But the trend that, as the 

frequency gets higher, the position of maximum likehood shifts to the lower end of AT, is 

probably a signature of-low frequency background contamination. 

Fig. 8: 95% C.L limits to AT. The black squares are the limits to which the data are 

correlated. The diamonds are limits from uncorrelated data. Note that the limits from 

uncorrelated data are stronger. 

Fig. 9: Distribution function given by Eq. (5.8) with kurtosis K = -0.5. The dotted line 

is a Gaussian with the same variance. 

Fig. 1Oa: The likelihood as a function of the size and amplitude of the hot and cold spots 

on CBR sky. 

Fig. lob: 95% C.L. on F as a function of the kurtosis of the distribution. 
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